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Introduction Results

 Caloric Restriction (CR) wihtout malnutrition delays aging and the incidence of age-related 
diseases in numerous model organisms, from yeast to primates. Although components of the 
mechanism in many organisms are beginning to emerge, a comprehensive understanding of 
how CR impacts the aging process in higher organisms, especially humans, is currently 
lacking. The Wisconsin National Primate Research Center (WNPRC) began a long-term study 
of CR in rhesus macaque monkeys in 1989 to being to address this deficit. Results from this 
study, previously published, describe hwo CR lowers all-cause mortality and increases 
longevity. Importantly, tissue biopsies were collected from these animals at various time points 
throughout the study, providing a means to being investigations of the molecular mechanisms 
underlying the beneficial effects of CR on aging.
 Here, we examine the early trajectory of CR by analyzing liver biopsies collected from the 
monkeys at study enrollment and after two years of the diet regimen. Using a systems biology 
approach, which attempts to comprehensively describe the state of the whole system rather 
than the individual pieces, we assessed molecular profiles comprising five different molecule 
types: messenger RNA via high-throughput RNA sequencing, metabolomics via NMR, 
proteomics and post-translational modification with acetylation via mass spectrometry, and 
large-scale lipid composition analysis via mass spectrometry. These data represent 
quantification of over 20,000 biological molecules from the livers of five control and 5 CR 
monkeys. We show that CR induces a distinct metabolic signature, affecting branched-chain 
amino acid metabolism, lipid metabolism, and RNA processing, among others, while strongly 
influencing the mitochondria, the powerhouses of the cell. We also describe the 
concordance/discordance between subsets of transcripts and proteins, lending insight into 
components of the methcanism regulated pre- and post-translationally.
 These data reveal a metabolic program that is induced by CR very early on in the diet 
routine, indicating that downstream aging processes may also be set in motion long before 
phenotypic effects are clinically observed. As such, this study has yielded a multitude of 
targets and hypotheses to investigate for anti-aging interventions that will be pursued for 
follow-up.

Methods

Conclusions
These data, the profiling of greater than 20,000 biological molecules, demonstrate that CR 
initiates the induction of a substantial metabolic reprogramming observable across many 
different classes of molecules; this reprogramming dramatically effects the mitochondria, lipid 
metabolism, mRNA splicing, and energy metabolism, and is clearly present early in the diet 
regime, presaging the longevity benefits that CR can provide.
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Liver biopsies were collected from control and restricted 
monkies at study enrollment and after two years of the diet 
regime. 
Figure 1. Molecular Profiling. We used high throughput 
molecular profiling technologies to profile 5 different 
classes of molecules: messenger RNA transcripts with 
next generation sequencing, proteins and acetyl protein 
post-translational modifications with mass spectrometry, 
lipids with mass spectrometry, and metabolites with 
nuclear magnetic resonance spectroscopy. This results in 
quantitative profiles of over 20,000 biological molecules.

Molecular Profiling
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Figure 2.  Biometrics and liver histology. A. Biometric 
indices (body weight, fat mass, lean mass, glucose, insulin, % 
body fat, cholesterol, insulin sensitivity-Si, and triglycerides) 
were evaluated for all of the animals. There were no statistical 
differences between control and restricted animals at the 0 year 
baseline, but for 3 metrics (body weight, fat mass, and % body 
fat) the 2-year trajectory of the restricted animals was 
statistically significant (p<0.05) from that of the controls. B. 
Hemotoxylin and eosin stain of representative liver slices of 
control and restricted animals. These images indicate no gross 
pathologies or differences between the two animal groups in 
the livers.

Biometrics

Figure 3.  Metabolomics. Quantiative 
assessment of metabolites extracted from livers 
of control and restricted animals. Orange 
represents up-regulation with CR over the 2-year 
time course, while blue is down-regulation 
(up-regulation in control diet). The 31 
metabolites measured comprised five 
categories: amino acids, branched-chain amino 
acids, armomatic amino acids, nucleotides and 
nucleotide precursors, and molecules involved in 
intermediary metabolism. Four metabolites had 
2-year trajectories that were significantly 
different between control and CR: aspartate (up 
with CR), lactate (down with CR), 
β-hydroxybutyrate (up with CR), and succinate 
(down with CR).

Metabolomics Figure 4.  Lipidomics. A. 
Example of mass spectrometry 
analysis of lipids. B. Principal 
Component Analysis (PCA) of all 
lipids. This describes the 
variance between all of the 
animals in terms of specific 
components; the spread of the 
animals and the direction they 
move over the 2-year diet period 
can observed in this analysis. C 
and D. Heat maps of lipids with 
significantly different 2-year 
trajectories between control and 
restricted. Dividing the lipids into 
phospholipids and triglycerides 
reveals upregulation of odd 
chain phospholipids and highly 
unsaturated triglycerides in 
restricted animals.

A B
Lipidomics

Figure 7.  Transcriptomics. A. Bar graph showing the top 10 
over-represented cellular pathways represented in the 
messenger RNA dataset, ranked by the number of genes found 
from the pathway and the pathway enrichment. B. Heatmap 
showing the significantly changing mRNA transcripts. The bulk 
of the ~400 transcripts are down-regulated over the two-year 
period in restricted animals. C. Circular heat maps of cellular 
pathways found to be significantly over-represented (relative to 
the whole transcriptome) in the dataset. The inner ring is the 
average of the two-year trajectory of four restricted animals, 
while the outer ring is the same for control animals.

Proteomics
BA

C

Figure 5.  Proteomics. A. Volcano plot of every 
protein p-value vs. the log2 fold change. Statistically 
significant proteins are in yellow, 254 proteins out of 
a total of 3,243. B. Venn diagram describing the 
quantification of 609 (~52%) mitochondrial 
proteins, according to MitoCarta. C. Circular heat 
maps of cellular pathways found to be significantly 
over-represented (relative to the whole proteome) 
in the dataset. The inner ring is the average of the 
two-year trajectory of four restricted animals, while 
the outer ring is the same for control animals.

Acetyl-proteomics

Figure 6.  Acetyl-proteomics. A. Bar graph showing the top 10 
pathways over-represented in the acetyl-proteome dataset, ranked by 
p-value and enrichment (the fold increase of the number of genes from 
the pathway present in the dataset, divided by the number of genes 
expected, given the size of the whole dataset). B. Heatmap showing the 
two-year trajectories of the significantly changing acetyl-proteoforms (p 
< 0.05). In general, acetylation is down in restricted animals. C. 
Schematic representing the amino acid sequence surrounding acetyl 
sites upregulated with CR (top) and down-regulated (bottom) with CR. 
There appears to be a slight preference for basic amino acids (K, R) in 
those down in CR. D. Venn diagrams describing the proportion of all 
(top), and significant (bottom) acetyl sites that are mitochondrial. An 
overwhelming number (>50%) are mitochondrial. E. Table of all 
mitochondrial acetyl sites significantly changing. Blue are sites 
down-regulated with CR orange are up-regulated with CR.
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