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. Introduction

Caloric Restriction (CR) wihtout malnutrition delays aging and the incidence of age-related
diseases in numerous model organisms, from yeast to primates. Although components of the
mechanism in many organisms are beginning to emerge, a comprehensive understanding of
how CR impacts the aging process in higher organisms, especially humans, is currently
lacking. The Wisconsin National Primate Research Center (WNPRC) began a long-term study
of CR in rhesus macaque monkeys in 1989 to being to address this deficit. Results from this
study, previously published, describe hwo CR lowers all-cause mortality and increases
longevity. Importantly, tissue biopsies were collected from these animals at various time points
throughout the study, providing a means to being investigations of the molecular mechanisms
underlying the beneficial effects of CR on aging.

Here, we examine the early trajectory of CR by analyzing liver biopsies collected from the
monkeys at study enroliment and after two years of the diet regimen. Using a systems biology
approach, which attempts to comprehensively describe the state of the whole system rather
than the individual pieces, we assessed molecular profiles comprising five different molecule
types: messenger RNA via high-throughput RNA sequencing, metabolomics via NMR,
proteomics and post-translational modification with acetylation via mass spectrometry, and
large-scale lipid composition analysis via mass spectrometry. These data represent
quantification of over 20,000 biological molecules from the livers of five control and 5 CR
monkeys. We show that CR induces a distinct metabolic signature, affecting branched-chain
amino acid metabolism, lipid metabolism, and RNA processing, among others, while strongly
influencing the mitochondria, the powerhouses of the cell. We also describe the
concordance/discordance between subsets of transcripts and proteins, lending insight into
components of the methcanism regulated pre- and post-translationally.

These data reveal a metabolic program that is induced by CR very early on in the diet
routine, indicating that downstream aging processes may also be set in motion long before
phenotypic effects are clinically observed. As such, this study has yielded a multitude of
targets and hypotheses to investigate for anti-aging interventions that will be pursued for
follow-up.

. Methods

Molecular Profiling
DNA

Liver biopsies were collected from control and restricted
monkies at study enrollment and after two years of the diet
regime.

Figure 1. Molecular Profiling. We used high throughput
molecular profiling technologies to profile 5 different
classes of molecules: messenger RNA transcripts with
next generation sequencing, proteins and acetyl protein
post-translational modifications with mass spectrometry,
lipids with mass spectrometry, and metabolites with
nuclear magnetic resonance spectroscopy. This results in
quantitative profiles of over 20,000 biological molecules.

ranscriptomics

ipidomics| @ - Biometrics
A © Oyear ® 2year

Figure 2. Biometrics and liver histology. A. Biometric ?m e gi: s @ N
indices (body weight, fat mass, lean mass, glucose, insulin, % -~#* & f.].z ie IR
body fat, cholesterol, insulin sensitivity-Si, and triglycerides) "¢ % " Ta e
were evaluated for all of the animals. There were no statistical z-| @ i. I

differences between control and restricted animals at the O year §./¢° ‘E! ' gf g' §:’§§ E;
baseline, but for 3 metrics (body weight, fat mass, and % body _" "¢ & "’ Ea go & F
fat) the 2-year trajectory of the restricted animals was g-i - 2 PR

statistically significant (p<0.05) from that of the controls. B. §ai8% &f ;% gf 1o1%s o1

Hemotoxylin and eosin stain of representative liver slices of LI :
control and restricted animals. These images indicate no gross  [EEEm
pathologies or differences between the two animal groups in
the livers.
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Figure 5. Proteomics. A. Volcano plot of every
protein p-value vs. the log, fold change. Statistically
significant proteins are in yellow, 254 proteins out of
a total of 3,243. B. Venn diagram describing the
quantification of 609 (~52%) mitochondrial
proteins, according to MitoCarta. C. Circular heat
maps of cellular pathways found to be significantly
over-represented (relative to the whole proteome)
in the dataset. The inner ring is the average of the
two-year trajectory of four restricted animals, while
the outer ring is the same for control animals.
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Figure 6. Acetyl-proteomics. A. Bar graph showing the top 10
pathways over-represented in the acetyl-proteome dataset, ranked by
p-value and enrichment (the fold increase of the number of genes from
the pathway present in the dataset, divided by the number of genes
expected, given the size of the whole dataset). B. Heatmap showing the
two-year trajectories of the significantly changing acetyl-proteoforms (p
< 0.05). In general, acetylation is down in restricted animals. C.
Schematic representing the amino acid sequence surrounding acetyl
sites upregulated with CR (top) and down-regulated (bottom) with CR.
There appears to be a slight preference for basic amino acids (K, R) in
those down in CR. D. Venn diagrams describing the proportion of all
(top), and significant (bottom) acetyl sites that are mitochondrial. An
overwhelming number (>50%) are mitochondrial. E. Table of all
mitochondrial acetyl sites significantly changing. Blue are sites
down-regulated with CR orange are up-regulated with CR.
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Figure 7. Transcriptomics. A. Bar graph showing the top 10
over-represented cellular pathways represented in the
messenger RNA dataset, ranked by the number of genes found
from the pathway and the pathway enrichment. B. Heatmap
showing the significantly changing mRNA transcripts. The bulk
of the ~400 transcripts are down-regulated over the two-year
period in restricted animals. C. Circular heat maps of cellular
pathways found to be significantly over-represented (relative to
the whole transcriptome) in the dataset. The inner ring is the
average of the two-year trajectory of four restricted animals,
while the outer ring is the same for control animals.
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