Cognitive Reserve Modifies Age-Related Alterations in CSF Biomarkers of Alzheimer’s Disease

Rodrigo Almeida,1 Stephanie Schultz,1 Elizabeth Boots,1 Sherman Yu,1 Benjamin Austin,1,4 Margarete Wichmann,1,4 Rebecca Kosciel,2 Henrik Zetterberg,3 Barbara Bendlin,1,2,4 Mark Sager,2 Bruce Hermann,2 Cynthia M. Carlsson,1,4 Sterling Johnson,1,2,4 Sanjay Asthana,1,4 Ozioma C. Okonkwo,1,2,4

1Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine & Public Health, Madison, WI
2Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine & Public Health, Madison, WI
3Sahlgrenska Hospital, Gotenborg University, Gotenborg, Sweden
4Geriatric Research, Education & Clinical Center, Wm. S. Middleton Memorial VA Hospital, Madison, WI

BACKGROUND

- Advancing age is the strongest risk factor for both the development of symptomatic Alzheimer’s disease (AD) and the accumulation of AD-related pathophysiological abnormalities
- There is often discontinuity between the presence of AD-related pathology and the emergence of clinical symptoms
- Individual differences in susceptibility to age-related alterations in AD biomarkers, such as cerebrospinal fluid (CSF) amyloid-β(Aβ42), total tau (t-tau), and phosphorylated tau (p-tau)
- Cognitive reserve (CR) has been posited as an explanation for this mismatch

OBJECTIVE

- To investigate whether CR modifies age-related alterations in CSF biomarkers of AD

METHODS

Participants:
- Three hundred and six individuals from the Wisconsin Registry for Alzheimer’s Prevention and the Wisconsin Alzheimer’s Disease Research Center
- Clinically characterized as either cognitively normal (n=249) or cognitively impaired (n=57)
- Cognitively impaired participants had a diagnosis of either mild cognitive impairment (n=16) or Alzheimer’s dementia (n=41)
- CR was indexed by years of education

Data Collection:
- Participants underwent lumbar puncture for collection of CSF samples, from which Aβ42, t-tau, and p-tau were immunoassayed
- Using this data, we additionally computed t-tau/Aβ42 and p-tau/Aβ42 ratios

Statistical Analysis:
- Linear regression included terms for
 - CR
 - Age
 - Sex
 - Apolipoprotein E4 (APOE4) genotype
 - Cognitive status (i.e., cognitively normal vs. cognitively impaired)
 - Age*CR interaction

- The age*CR interaction term was the effect of primary interest in all models. It indicates a differential effect of age on CSF biomarkers as a function of CR (Low vs. High)
- All analyses were conducted using IBM SPSS, version 21.0. Only findings with p ≤ .05 (2-tailed) were considered to be significant

CONCLUSION

- High cognitive reserve is associated with reduced adverse age-related alterations in CSF biomarkers of AD
- Findings suggest a pathway through which cognitive reserve might favorably alter lifetime risk for symptomatic AD

ACKNOWLEDGEMENTS

This work was supported by National Institute on Aging grants K23 AG046957 (OCC), R01 AG027161 (SCJ), P50 AG033514 (SA), R01 AG021155 (SCJ), and R01 AG031790 (CMC); and by a Clinical and Translational Science Award (UL1RR025011) to the University of Wisconsin, Madison.

Info: Emails: rodrigoppina03@gmail.com; ozioma@medicine.wisc.edu; Phone: (608) 265-4479; Web: http://www.brainmap.wisc.edu