Acarbose ameliorates western diet-induced metabolic and cognitive impairments in the 3xTg mouse model of Alzheimer’s disease

Michelle M Sorsalla, MS1,2, Reji Babygirinja, MS1,2, Madeline Johnson1,2, Samuel Cai1,2, Chanyung Yeh, PhD1,2, Mariah Calubag1,2, Michaela Trautman, RD, CD1,2, Isaac Grunow1,2, and Dudley Lamming, PhD1,2,3

1 University of Wisconsin-Madison, Madison, WI, USA, 2 William S. Middleton Memorial Veterans Hospital, Madison, WI, USA, and 3 Comparative Biomedical Science Graduate Program, University of Wisconsin-Madison, Madison, WI, USA

Introduction

- Alzheimer’s disease (AD), a neurodegenerative disease in which patients exhibit impaired memory, motor function, and language due to neuronal damage, is rapidly growing in prevalence as the population ages.
- AD is a disease of aging, and other diseases of aging including diabetes and obesity are risk factors for AD.
- As such, geroprotection interventions may be of use in the prevention and treatment of AD.
- Here, we report our investigation into the effects of acarbose, a geroprotector used to treat type 2 diabetes, on cognition and disease pathology in the 3xTg AD mouse model of AD in the presence or absence of a western diet.

Methods

- Western diet exacerbated cognitive deficit which is ameliorated by acarbose.
- Western diet led to metabolic impairments and exacerbated AD pathology in the 3xTg mouse model of AD.
 - Increased body and fat mass
 - Decreased energy expenditure
 - Reduced glucose tolerance in female mice
 - Increased Iba1, p-tau, and APP levels
 - Significant cognitive impairments

Conclusions

- Acarbose ameliorated many of the Western diet-induced impairments, including:
 - Body and fat mass
 - Energy expenditure
 - Glucose tolerance
 - Start and APP levels
 - Cognitive deficits

Acknowledgements

We would like to thank all the members of the Labing Lab for their assistance and insight, and the Merrill, Kimpel, and Davis labs for their support. The work was supported in part by the NIH/National Institute on Aging (AG051974, AG056771, and AG062328 to D.W.L. and F31AG081115 to R.B.), the Alzheimer’s Association (33ARGC-1029626 to D.W.L.), and startup funds from the University of Wisconsin-Madison School of Medicine and Public Health and Department of Medicine to D.W.L. The Lamming Lab is supported in part by the U.S. Department of Veterans Affairs (D1-10004043), and the work was supported using facilities and resources from the William S. Middleton Memorial Veterans Hospital. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH, the Department of Veterans Affairs, or the United States Government.